The algorithm of Fuzzy C-Means clustering based on non-negative matrix factorization

نویسندگان

  • Wang Nian
  • Su Liangliang
  • Tang Jun
  • Liang Dong
  • Zeng Yanjun
چکیده

Clustering analysis is an effective method to discover and identify tumor classes. So, this paper proposes a Fuzzy C-Means clustering (FCM) algorithm based on Non-negative matrix factorization (NMF). Firstly, gene expression profiling (GEP) is simply processed through mean and variance of gene expression, which can then be mapped into a low dimensional space by NMF method. Finally, for discovering and identifying cancer classes, the FCM algorithm is adopted to cluster the GEP. Experimental results show that the NMF reduction dimension method has the capability to resist noise. Compared with Principal component analysis (PCA) method, the NMF reduction dimension method also shows certain advantage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An analysis on effective and accurate data clustering based on Non-negative Matrix Factorization

Nonnegative matrix factorization method is a kind of new matrix rotting method. It is an effective tool for large data processing and analysis. At the same time, NMF has an important performance on in intellectual information processing and pattern recognition. We then aim for increasing an efficiency and accuracy of data clustering and classification based on NMF. NMF method is used to reduce ...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012